Personal Profile

I am currently pursuing a Master's degree in machine learning at POSTECH under the supervision of Professor Won Hwa Kim. My research centers around generative models using dynamical systems. Previously, I have specialized in modeling marked temporal point processes using Neural ODEs. Presently, I am exploring diffusion networks for graph structures using topological data analysis.

Education

POSTECH

MSc. in Artificial Intelligence

• Class President, Graduate Schoool of Artificial Intelligence

Chung-Ang University

BSc. in Compute Science and Engineering

- Cumulative GPA: 4.47/4.50
- Summa Cum Laude

University of California, Irvine

BSc. in Computer Science and Engineering

- Cumulative GPA: 3.61/4.00
- Dean's Honors List: 5 Semesters

Research Interests

- Time Series Modeling
- Generative Model
- Dynamical System Modeling
- Graph Machine Learning

Publications

Generative Modeling for Brain Images from Genetics Information (under review) co-author

Decoupled Marked Temporal Point Process using Neural Ordinary Differential Equations

Yujee Song, Donghyun LEE, Rui Meng, Won Hwa Kim The Twelfth International Conference on Learning Representations (ICLR), 2024

Projects

Topology-aware Graph Diffusion Model for Brain Network Generation

POSTECH

- Analyzed the impact of integrating Topological Data Analysis (TDA) into graph generation for brain networks.
- Conducted experiments using state-of-the-art methods to assess the influence of TDA on graph generation outcomes.
- Processed brain network data from the ADNI dataset into a suitable format for graph generation purposes.

Efficient High Order Feature Transform for few-shot segmentation

POSTECH

- Adapted a 3D Feature Transform layer to a 2D Feature Transform layer for application in segmentation tasks.
- · Completed as part of a deep learning class project.

Alzheimer Disease Diagnosis from Brain Signal

POSTECH, joint research with KIST

- Utilized resting EEG, resting ERP, and attention ERP signals for Alzheimer Disease (AD) diagnosis.
- Processed and analyzed brain signals to develop neural architectures for effective diagnosis.
- Collaborated with a researcher from KIST to enhance diagnostic methods using brain signal data.

Languages

English Professional proficiency Korean Native proficiency

Pohana, Republic of Korea Feb 2023 - Current

Seoul, Republic of Korea Mar 2020 - Feb 2022

> CA, USA Sep 2015 - Apr 2017

Pohang, Korea Jan 2024 - Mar 2024

Pohang, Korea Sep 2023 - Dec 2023

Pohang, Korea Aug 2023 - Dec 2023